“AD=A037 190 ARIZONA UNIV TUCSON DEPT OF CHEMISTRY F/6 972 ™
THREADED CODE FOR LABORATORY COMPUTERS.(U)
Y FEB 77 J B PHILLIPS:» M F BURKE, 6 S WILSON NO0014=75-C=0512
UNCLASSIFIED NL

END
DATE
FILMEL

4 =]

A et

ADAOD37190

-

ro
OFFICE OF NAVAL RESEARCH / ’
Contract N0O0014-75§C-0512 / Ao

Task No. NR 051-518 g [
Technical Report No, 8 G

THREADED CODE FOR

LABORATORY COMPUTERS

Jo. B. Phillips, M. F. Burke and G. S. Wilson

Chemistry Department
University of Arizona
Tucson, Arizona 85721

Submitted for Publication in

Communications of the ACM

February 1977

Reproduction in whole or in part is permitted for any purpose of the
United States Government

Approved for Public Release: Distribution Unlimited

o™
PRy
Viss i

mpe PN A A

il FULLL bhoivli §

. et e e B Bk,

Abstract

A typical minicomputer has been transformed into a threaded code
machine by the addition of a simple, fast interpreter implemented in
microcode. When made directly available to the programmer, the threaded
code programming technique is a very convenient and efficient means of
structuring programs, particularly in systems where pnrograms are

continually being modified.

Key Words and Phrases:
interpreter, threaded code, machine code, subroutine calls, time tradeoff,
space tradeoff, compiled code, code generation, laboratory computers,

problem orientea languages

CR Categories 4.12, 4,13, 4,21, 4,22

Acknowledgement
This work was supported in part by Office of Naval Research through

ONR Contract No. N0O0014-75-C-0512.

o

P

155 Introduction

In the course of developing a programming and operating system for a
laboratory computer network, an interpretive technique related to the threaded
code (1,3) programming technique has been developed. In threaded code a pro-
gram consists of a string of addresses pointing to service routines. The pro-
gram is executed interpretively as shown in Figure 1, Upon completion of each
service routine, control is transferred to the next one in sequence by incre-
menting the threaded code position counter and then jumping indirectly through
the address in the threaded program to the next service routine. This process
can be quite efficient. In fact, for some computer instruction sets (e.g.

the PDP 11) it is faster than the standard subroutine call and return. Thus

threaded code and related techniques offer most of the advangages of an in-
terpretive mode of operation without the major penalty of slow program ex-
excution.

A programming system based on the concept of threaded code, FORTH (4),
has been implemented on a number of different computers used in instrument
control applications. It uses the idea of indirect threaded code (3) for
greater flexibility in defining service routines. Specifically, service
routines are provided tn move the threaded code position counter to and from
a stack so that one threaded program may call another as shown in Figure 2.
This capability is an extremely important extention of the threaded code
technique because it allows a very convenient hierarchical structuring of
programs. In addition, FORTH provides for interactive compilation of both

threaded code and assembly level service routines. This particular program-

onbnaind iod

i SRR

e

— S o st

ming technique is limited in two ways for our approach to laborator§ com-
puters: (1) dedication to single user; (2) a syntax which is difficult to
use in larger programs.

Threaded code can be used to produce highly hierarchically structured
programs which, in addition to being smaller in size than equivalent con-
ventionally structured programs, are also often easier to write and under-
stand. This is closely related to the idea of structured programming (2)
in which one of the basic principles is the liberal use of subprogram struc-
tures (7). Because of its potential usefulness as an efficient means of
structuring programs, it is important that the threaded programming tech-
nique be further developed to make it more generally applicable. Improve-
ments can be made both in the design of the technique itself and in methods

of writing structured programs using it,

II, Microcode Implementation of a Threaded Code System

HISS, Hierarchical Interactive Sharing System, an operating system
written using threaded code, has been implemented for a Hewlett Packard
2100 with the writable control store (WCS) option installed. It is an
experimental system for which efficiency in software implementation and
maintenance are more important than efficiency in operation. For this
reason, it was decided to code as much of it as possible in an interpretive
high level language rather than assembly language. New microcode stored
in WCS was used to extend the instruction set for interpretation of
threaded code. Operating systems have been previously implemented in an inter-

pretive fashion, but with substaintial execution speed penalties (6).

Basically, the flow of control is as illustrated in Figure 2. The

CIRRRRV=So,

threaded code interpreter is similar to the one described by Bell (1) and
works in the following way:

Step 1. Increment PC on top of control stack.

Step 2. Fetch S from PCth address of memory.
Step 3(a) If S denotes a service routine, execute it,
Step 3(b) If not, push the address of S to control stack.,
Step 4. Go to Step 1. :
] A service routine, NEXT, is provided to delete the value of PC on top of
- the control stack returning control to the calling threaded program.

The threaded code interpreter and its associated routines use 2418 of

{ the 400g words available in one WCS module. The rest of the WCS space is

available for use by low level service routines or user defined instructions.

An average interpreter cycle takes about 12 pisec. of overhead time. Of this,
about 4 psec. is used in fetching the instruction from a microcode implemented
virtual memory which is useful in this particular system but is not required 3
by the threaded programming technique itself,

Without microcode, threaded code would not be very efficient on the
HP 2100 because the standard instruction set does not include any index

instructions or registers for implementing stack operations. Many other

st .. i s T Bt

conventional instruction sets would be better than the HP 2100 for this

application, but with the HP 2100 microprogramming capability a threaded

| code interpreter can be implemented almost as efficiently as if the computer
was designed specifically for it. Using microcode the above threaded
code interpreter, including the NEXT routine, can be implemented as

! § a single instruction which is executed at the end of each service routine,

. - A —— d ~

A threaded program in the HISS system consists of a string of code
numbers, This technique is essentially equivalent to the strings of
addresses used in previous threaded code systems., The instruction re-
quired to transfer control between service routines is more specialized
than a simple jump instruction, but through the use of micorcode it can
be implemented almost as efficiently.

There are several reasons for this use of code numbers instead of
addresses, First, some service routines are implemented in microcode and
therefore do not have core addresses. Second, the microcoded interpreter
can index a table of addresses in core just as fast as it can fetch an
indirect address for the indirect threaded code technique (3). Third, the
routine to push threaded code addresses to the control stack, Step 3(b),
should be part of the microcoded interpreter instead of an indirectly
referenced service routine as in FORTH., It is simpler and more efficient
to make the Step 3 decision based on the range of the code number rather
than the value of a word fetched from the program. Finally, instead of the
full 16 bit words required for addresses, 8 bits are sufficient to specify
most code numbers significantly reducing the memory required for threaded
code.

The utility of this structure can best be illustrated by analogy with
the concept of a computer's instruction set. Almost always an instruction
set includes a subprogram calling instruction which essentially allows the
programmer to define new instructions by writing programs using the basic

instruction set and any previously defined subprograms., The threaded pro-

gramming technique is a generalization of the hierarchical subprogram idea.

Instead of one instruction code for calling subprograms inside a low level
instruction set, All but a very few codes are used to call subprograms and
the general purpose low level instruction set is confined to a special mode
of operation, A hierarchical set of subprograms thus becomes the instruc-
tion set for a special purpose system, The set of instructions provided by
lower levels are more appropriate to a specific problem than a general
purpose language would be, so higher level programs can be made shorter and
more understandable,

Different instruction sets can be defined for different applications.
In fact, through the use of local codes the instruction set can vary in
different parts of a program. By localizing the range of instruction codes
very efficient specialized instructions can be defined and used in one part
of a program. The same instruction codes are then reused in other parts of
the program. Since a given local instruction has a specific range from
which it is callable, the programmer implementing it need not worry about
making it completely foolproof and can so produce simpler, more efficient
code., Also, a programmer working at higher levels is not tempted to use
a specialized lower level instruction which was not intended for his use.
Contrast this with the FORTH system in which, generally, all lower level
instructions are useable by anyone.

Codes less than 208 are interpreted as service routines at Step 3(a).
All other codes are used to index into tables of threaded program addresses

which are pushed to the control stack at Step 3(b)., Control is transferred

to one of the 208 microcoded service routines via an indexed microcode jump

LSS

»
>

table. Most of these routines simply perform some operation which is im-
portant enough to be in microcode, but three of them (NEXT, XO and ASOP)

are central to the operation of this threaded code system. NEXT deletes
the top address from the control stack, and as a result, transfers control
from the current threaded code routine to the calling threaded program whose
addre§s is next on the control stack. XO uses the immediately following

8 bit byte to index into a table of addresses of service routines in core.
These service routines provide basic arithmetic and an interface with the
core resident operating system. ASOP switches the computer from the threaded
code interpreter mode of operation to its regular machine code mode. The
machine code instructions follow immediately after the ASOP code.

Parameters are passed to and results returned from service routines 3
and sub threaded programs through the use of a data stack, This data stack
is distinct from and should not be confused with the control stack which
contains the return addresses for sub threaded programs. Several of the
basic microcoded service routines provide for elementary operations on the
data stack including pushing constants to it, deleting the top word, and
duplicating the top word, Many other data stack operations such as simple
arithmetic operations are implemented as service routines through the X0
code.

Additional features provided by this threaded code syvstem include
virtual memory, locally defined instruction codes, and exceptional condition
exits. These are important for the overall usefulness of the system but
are not necessary for understanding the principles of threcaded code and so

will not be discussed here.

ITII, Utility of Threaded Code for Laboratory Computers

The biggest problem with small computers in the research laboratory has
been, and still ié; programming. Programs are usually small to medium in
size and include routines to interface with instruments, perform calculations
on data, sequence through the logic of experiments, and present results. By
their very nature, experiments tend to change and so the programs which perform
them also must change. All parts of an experimental program are subject to
change but those parts concerned with the sequencing of operations are especial- 1
ly so. This applies to laboratory data processing programs as well as real time
control programs. Very often the experimenter making changes knows more about
the experiment than the program, and is not interested in learining any more 3
about the program than necessary. It the programwing invoived in an experi-
nent becomes too troublesome then the experiment won't be done, potentially
valuable research is left unfinished, and the '"computer" has failed to do
its job.

The threaded code technique when combined with a suitable means of com-
pilation offers interesting possibilities for improving the laboratory computer
programming situation (5). The hierarchical structure it creates is ideal for

laboratory computer systems. At the bottom is the threaded program interpreter

e ettt o

and various routines used by it coded in both microcode and assembly language.
These should never be changed by the chemist type users and can be considered
as part of the fixed hardware. Next come the machine code instrument inter-

; face and basic arithmetic service routines. Above them are a serics of levels
of threaded program building blocks defining all of the operations needed to

perform experiments of a given type. At the highest level the actual experi-

ments are defined as sequences of operations to be performed, The chemistry of

1
{
4

S

. o

£
5
.

an experiment is separated from the detailed computer operations so the user

does not have to understand all the implementation details in order to make
changes in the experiment.

Users performing experiments would confine their programming to the
highest levels. With an approproate sét of instructions provided by lower levels
programming at the highest level should be little more than typing in sets of
directives describing the conditions for specific experiments. Intermediate
level threaded programs are used to implement systems for performing experiments
of various types. Users working at this level must understand the chemistry
involved in the experiments to be done and in addition be reasonably competent
programmers. Cnly limited knowledge of the ultimate uses of a system is
needed to implement routines at the lower levels but increased expertise in
computer programming is required.

Until now the only system to make a threaded code technique directly
available to the programmer has been FORTH (4). 1In the HISS system a general
purpose macro processor is used to translate threaded code source to binary
code which can be interpreted by the threaded code interpreter. This approach
was used for two reasons. First, it fits the structure of threaded code very
well. New instruction names can easily be defined to match the threaded code
instruction set avaialble to the program being compiled. And second, it pro-
vides the flexibility required to compile complex groups of programs like

the HISS operating system. Although this macro processor is not as inter-

active as FORTH, it produces more readable proprams, handles complex syntax
in a more straightforward fashion, and is less prone to errors caused by

symbols being referred to outside their range.

N Ty

T

T

TN T T

s

G R S b S Sl e S s L e

T T T - A R e o o e e

35

‘Tl 3

SRR

’

Initially, a macro is defined to generate code for each microcode and
core resident service routine. A section of threaded code can then be
written as a sequeﬁce of macro names in a format resembling a simple assembly
language. Threaded code procedures are defined by giving macro names and
code numbers to each section of threaded code. Once defined, a procedure can
then be used in any other threaded program simply be mentioning its name in
the same way a service routine is called. An example demonstrating the
definition of a procedure and its use is shown in Figure 3. At any time
during the compilation of a procedure the compiler may be switched to
assemble mode to generate regular machine code for the ASOP instruction
allowing additional low level service routines. More complex syntax, such

as for loops and conditionals, is handled by more complicated macros.

IV. Conclusion

The threaded code technique in addition to saving considerable amounts
of memory space with little reduction in execution speed, provides a struc-
ture which is particularly useful in programming laboratory computers. Ex-
perimental programs fit naturally into the hierarchical structure of threaded
code especially when they will be continually modified. A microprogrammable
computer is especially useful for implementing a threaded code system because
it allows a more complex interpreter to be used without a significant penalty
in execution speed. The presence of the microcoded interpreter and a machine
instruction to use it transforms a typical minicomputer into a threaded code
machine with interesting possibilities for structured programming. Ultimately,
computer systems intended for use in laboratory environments should be
specifically designed to use a hierarchical programming technique such as

threaded code.

FIGURE CAPTIONS

Figure 1. Threaded code

Figure 2, Threaded code with a control stack

Figure 3. Example of the HISS system threaded code. Procedure DELI
is defined in terms of microcoded service routines., It
can then be used as an instruction in any higher level

procedure such as I.MAX,

sl o8

THREADED PROGRAM

A

|
(______.__
3

MACHINE CODE
SERVICE ROUTINES

]

S

\

THREADED PROGRAM

1ﬂ THREADED SUBPROGRAM

MACHINE CODE
SERVICE ROUTINES

3 *
= * PROCEDURE TO DELETE WORD 1 OF DATA STACK
*

PROC DEL1 BEGIN

XCH * EXCHANGE TOP 2 WORDS
DEL * DELETE TOP WORD
NEXT * DO NEXT INSTRUCTION
END

*

* PROCEDURE TO CHOOSE THE MAXIMUM OF TWO LNTEGERS
*

PROC I.MAX BEGIN

DDUP * DUPLICATE TWC STACK WORDS
IE Ea< * IS TOP WORD SMALLER OF 1WO?
THEN DEL * YES, DELETE LT

ELSE DELL * NO, DELETE SECOND WORD
NEXT * EXIT FROM PROCEDURE

END

‘3
"

3

" AT Bt

R SRR S A

References

Bell, J.R. Threaded code. Comm. ACM 16, 6(June 1973), 370-372,

Dahl, 0.J., Dijkstra, E.W., and Hoare, C.A.R. Structured Programming
Academic Press, London, 1972,

Dewar, R.B.K. Indirect threaded code. Comm: ACM 18, 6(June 1975),
330-331.

Moore, C.H. FORTH: a new way to program a mini-computer. Astron,
Astrophys. Suppl. 15, (1974), 497-511.

Phillips, J.B. and Burke, M.F. Programming techniques for chromatographic
experiments. J. Chrom. Sci. 14, 6(June 1976), 270-274,

Stoy, J.E. and Strachery, C. 0S6-An experimental operating system for a
small computer. Part I: General principles and structure. Computer J.
15, 2i(May 19725 117-1:24:

Wright, S. Invocation - the key to program structure. Comm. ACM 19,
6(1976), 361.

R 3 ol ”
SECURITY CLASS I & sor Teiih PAGE (When Date Foate
READ INSTRU (“[l()NS
REPORT DOCUMENTATION PAGE O i s Mty
1. REPORT NUMBER 2. GOVT ACCESSION N 3

i

No.

Qﬂ:/. gl

'\EC | E /T S CATA\,OG NUMBE
ﬁ A

; THREADED CODE FOR LABORATORY COMPUTERS , /

| S——

it ¢

BRI ITITE

m&._)'

e FVPE OF REPORT & PERIOD COVER EDmnr]

Technical Report
2-1~74 2-1-77

W

S i T R S ’ 6 PERFOAMING DRG. REPORT NUMBER -
i . L gt
Tech. Report No. 8 ;
UTHOR(S) S . = 8. CONTRACT OR GRANT NUMBER(s) P——
f i
l /éhllllps, l ﬁurke apel Gf Allson NO0014-75§C-0512
T ———— 10. PROGRAM ELEMENT. PROJECT, TASK
ORGANIZATION NAME AND ADDRESS ARER b HoHR LT MEERs
Department of Chemistry - St p
University of Arizona //} f ;/f, 7’// // NR051-518
Tueson, Arizona 85721 Nl e — * s,
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ..
Materials Sciences Division 4/ {/ February 7, 1977 | B~
Office of Naval Research -~« f I3SRNUMBERCOFRAGES
Arlington, VA 22217
14. MONITORING AGENCY NAME 8 ADORESS(I(dlllemConqu. Oftice) [15. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
(CODE 472) 5 — 7 GRADING
. 15a. DECLASSIFICATION DOWNGRADIN mm——
Arlington, VA 22217 * sCwEbuLE
. S
16. DISTRIBUTION STATEMENT (of this Report) o
Distribution of this document is unlimited ot
g
NOOO LY =TS - JSL e
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if di{ferent from Report)
e
18. SUPPLEMENTARY NOTES p
!
3
!
19. KEY WORDS (Continue on reverse side If neceasary and identify by block number) i
. 5 : : !
interpreter, threaded code, machine code, subroutine calls, time tradeoff,
space tradeoff, compiled code, code generation, laboratory computers, :
problem oriented languages !
20 ABSMACT (Continue on reverse alde Il necassary and Identily by block number) \

A typical minicomputer has been transformed into a threaded code i
machine by the addition of a simple, fast interpreter implemented in micro- v
code. When made directly available to the programmer , the threaded code —
programming technique is a very convenient and efficient means of structuring e
programs, particularly in systems where programs are continually being e
modified. ——

FORM .
DD | jan 73 1473 EOITION OF 1 NOV 6515 OBSOLETE
S/N 0102 LF 014 6601 :
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)
- vile ' N § ¢ 5’ 5 “ &y .

